

Matrox Genesis – Cross-Reference Guide (MIL vs. Genesis

Native Library commands)

MIL versus Matrox Genesis Native Library commands

When used with Matrox Genesis, MIL functions make calls to the Matrox Genesis Native Library, which

executes operations on the processing node(s). For most MIL functions, there is a corresponding

Native Library function. However, some functions are only available through MIL such as gauging and

OCR. Also, the Native Library offers some board-specific functions that MIL does not provide. In

general, MIL can be used to develop the entire application or at least the majority of the application. If

required, MIL Native Mode Programming can be used to integrate Native Library functions. The

objective in developing mainly with MIL functions is that the application can be as portable as possible.

Moving the application later to a different platform will require changing only the board-dependent

portion of the code.

To facilitate the use of the two libraries; this document lists and describes MIL commands and provides

you with the equivalent or appropriate Native Library command(s). This document will serve as a quick

cross-reference. For those developers who have already written a MIL application, this guide will assist

in porting the application to Matrox Genesis. For developers who would like to build a MIL application

for Matrox Genesis, this guide will assist in determining the right mix of MIL and Native Library

commands. The commands have been listed under their respective MIL module for faster reference.

This document is not intended to be used alone; but rather in conjunction with both the MIL and Native

Library Command Reference manuals.

Differences in Data Management

MIL and Native Library functions operate and store information in buffers. While both libraries allocate

buffers in basically the same way, there are some capabilities available with Native Library that are not

available with MIL. With Native Library, users can allocate a buffer that contains control fields to store

function options. This is done by adding the required control fields of those desired function options and

then passing this control buffer to the function. With MIL, rather than storing options in a single control

buffer the options are specified in the function's parameter. For copying data, both libraries can copy

data between buffers, however with The Native Library, users can specify copying data over the PCI

bus or VMchannel, and specify copy options not available with MIL (i.e. tag buffers, zooming and

subsampling, extracting or swapping bytes, etc.).

MIL users will also note that the Native Library functions are identified according to the data type that

they support. In other words, functions that can perform operations on packed binary buffers, integer

buffers, and floating-point buffers are known as the imBin...(), imInt...(), and imFloat...() functions,

respectively. For additional information, refer to the MIL and Native Library command reference

manuals.

The Application Allocation and Control Module

MIL Command MIL Description Native Library

Command

Comments

MappAlloc() Allocate a MIL

application.

Not applicable

MappAllocDefault() Allocate MIL

application defaults.

imBufAlloc() or

imCamAlloc() or

imDevAlloc() or

imThrAlloc()

With MIL, a user can

separately call each

individual allocation

or use this macro to

set up the

environments using

defaults. With the

Native Library, a

user will have to

separately call each

allocation. See

individual

allocations.

MappChild() Allocate a child MIL

application.

Not applicable

MappControl() Control an

application

environment

setting.

imAppControl()

MappControlThread() Allocate/control MIL

application

thread(s) or events.

imThrControl()

MappFree() Free a MIL

application.

Not applicable

MappFreeDefault() Free MIL

application defaults.

imBufFree() or

imCamFree() or

imDevFree() or

imThrFree()

With MIL, a user can

separately free each

individual allocation

or use this macro to

free the defaults that

were allocated. With

the Native Library, a

user will have to

separately free each

allocation. See

individual Free

functions.

MappGetError() Get error code and

related information.

imAppGetError() or

imAppCatchError()

With MIL, a user has

only one way to get

an error. With the

or imThrGetError()

or imSyncGetError()

Native Library, there

are several ways.

MappGetHookInfo() Get information

about a hooked

event.

Not available

MappHookFunction() Hook function to an

event.

Not available

MappInquire() Inquire about the

application.

imAppInquire()

MappModify() Modify MIL objects

using specified

operations.

Not applicable

MappTimer() Control the MIL

timer.

imSysClock()

The Blob Analysis Module

MIL Command MIL Description Native Library

Command

Comments

MblobAllocFeatureLis

t()

Allocate a feature

list.

imBlobAllocFeatureL

ist()

MblobAllocResult() Allocate a blob

analysis result

buffer.

imBlobAllocResult()

MblobCalculate() Perform blob

analysis

calculations.

imBlobCalculate()

MblobControl() Change the blob-

analysis processing

mode.

imBlobControl()

MblobFill() Fill blobs that meet

a given criteria.

imBlobFill()

MblobFree() Free a blob-

analysis result

buffer or feature

list.

imBlobFree()

MblobGetLabel() Get the label value

of a blob at a

specific position.

imBlobGetLabel()

MblobGetNumber() Get the number of

currently included

blobs.

imBlobGetNumber()

MblobGetResult() Read features

values of the

included blobs.

imBlobGetResult()

or

imBlobCopyResult()

imBlobGetResult() is

equivalent, however

imBlobCopyResult()

can be more

efficient.

MblobGetResultSingl

e()

Read the feature

value of a single

blob.

imBlobGetResultSin

gle()

MblobGetRuns() Get the blob length

encoding

information.

imBlobGetRuns() or

imBlobCopyRuns()

imBlobGetRuns() is

equivalent, however

imBlobCopyRuns()

can be more

efficient.

MblobInquire() Inquire about a

blob-analysis result

buffer.

imBlobInquire()

MblobLabel() Draw labeled

image.

imBlobLabel()

MblobReconstruct() Reconstruct blobs

in an image.

imBlobFill and

imBlobSelect()

With the Native

Library, a user can

achieve same

results with this

combination of two

functions.

MblobSelect() Select blobs for

calculations and

result retrieval.

imBlobSelect()

MblobSelectFeature() Select feature(s) to

be calculated.

ImBlobSelectFeatur

e()

MblobSelectFeret() Add Feret angle to

the feature list.

imBlobSelectFeret()

MblobSelectMoment(

)

Add specified

moment to the

feature list.

imBlobSelectMomen

t()

The Data Allocation and Access Module

MIL Command MIL Description Native Library

Command

Comments

MbufAllocColor() Allocate a color

data buffer.

imBufAlloc() Function is

equivalent for

processing buffers,

however display

buffers should be

allocated with

imBufChild().

MbufAlloc1d() Allocate a 1D

buffer.

imBufAlloc1d() Function is

equivalent, display

buffer should be

allocated with

imBufChild().

MbufAlloc2d() Allocate a 2D

buffer.

imBufAlloc2d() Function is

equivalent, display

buffer should be

allocated with

imBufChild().

MbufChildColor() Allocate a child

data buffer within a

color parent buffer.

imBufChildBand()

MbufChild1d() Allocate a 1D child

data buffer.

imBufChild() Allocate a one-

dimensional child

buffer with the Xstart

and Xsize

parameters.

MbufChild2d() Allocate a 2D child

data buffer.

imBufChild() Allocate a two-

dimensional child

buffer with the

Xstart, Ystart, Xsize,

and Ysize

parameters.

MbufClear() Clear buffer to a

color.

imBufClear()

MbufControl() Control buffer

features.

Not available

MbufControlNeighbor

hood()

Change the value

of an operation flag

associated with a

custom kernel or

structuring element.

imBufPutField() With the Native

Library, this MIL

function does not

exist as a specific

function. See

individual

neighborhood

functions. (e.g.

operation flag

M_OVERSCAN's

M_TRANSPARENT

and M_REPLACE

are specified with

imIntConvolve's

Control parameter

IM_CTL_OVERSCA

N)

MbufCopy() Copy data from one

buffer to another.

imBufCopy() or

imBufCopyPCI() or

imBufCopyVM()

With the Native

Library, a user can

specify the data path

(over the PCI bus or

VM channel), to

copy data to a

destination buffer.

MbufCopyClip() Copy buffer-

clipping data

outside destination

buffer.

imBufChild() and

imBufCopy()

First, allocate a child

buffer and then copy

the buffer.

MbufCopyColor() Copy one or all

bands of an image

buffer.

imBufChildBand()

and imBufCopy()

First, allocate a one-

band child buffer

and then copy the

buffer.

MbufCopyCond() Copy conditionally

the source buffer to

the destination

buffer.

imIntBinarize() and

imIntTriadic()

Binarize a

conditional buffer,

then call

imIntTriadic(),

setting the operation

parameter to:

IM_PP_MERGE.

MbufCopyMask() Copy buffer with

mask.

imIntTriadic() Call imIntTriadic(),

setting the operation

parameter to:

IM_PP_MERGE.

MbufDiskInquire() Inquire about the

buffer data in a file.

Not available

MbufExport() Export a data buffer

to a file using the

specified output file

format.

imBufSave()

MbufFree() Free a data buffer. imBufFree()

MbufGet() Get data from a

buffer and place it

in a user-supplied

array.

imBufGet()

MbufGet1d() Get data from a 1D

area of a buffer and

imBufGet1d()

place it in a user-

supplied array.

MbufGet2d() Get data from a 2D

area of a buffer and

place it in a user-

supplied array.

imBufGet2d()

MbufGetColor() Get data from one

or all bands of a

buffer and place it

in a user-supplied

array.

imBufChild() and

imBufGet()

First, allocate a child

buffer in a certain

band of color, and

then get the data.

MbufGetLine() Read a series of

pixels within

specified

coordinates, count

them, and store

them in a user-

defined array.

imBufMap() Create a pointer to

the buffer data using

imBufMap(), then

use the pointer to

read the pixels along

the line.

MbufImport() Import data from a

file into a data

buffer taking into

account its file

format.

imBufRestore() or

imBufLoad()

imBufRestore()

loads data from a

file into an

automatically

allocated buffer

while imBufLoad()

loads data into a

specified buffer.

MbufInquire() Inquire about a

data buffer

imBufInquire()

MbufLoad() Load data from a

file into a data

buffer assuming it

is in a MIL file

format.

imBufLoad()

MbufPut() Transfer data from

Host memory to a

buffer.

imBufPut()

MbufPutColor() Put data from a

user-supplied array

into one or all

bands of a data

buffer.

imChild() and

imBufPut()

First, allocate a child

buffer, and then

transfer data to the

buffer.

MbufPutLine() Write a specified

series of pixels

within specified

imBufMap() Create a pointer to

the buffer data using

imBufMap, and then

coordinates on a

line.

use the pointer to

write the pixels

along the line.

MbufPut1d() Put data from a

user-supplied array

into a 1D area of a

buffer.

imBufPut1d()

MbufPut2d() Put data from a

user-supplied array

into a 2D area of a

buffer.

imBufPut2d()

MbufRestore() Restore MIL file

format data from a

file into an

automatically

allocated data

buffer.

imBufRestore()

MbufSave() Save a data buffer

in a file using the

MIL output file

format.

imBufSave()

MbufFree() Free a data buffer. imBufFree()

MbufGet() Get data from a

buffer and place it

in a user-supplied

array.

imBufGet()

MbufGet1d() Get data from a 1D

area of a buffer and

place it in a user-

supplied array.

imBufGet1d()

MbufGet2d() Get data from a 2D

area of a buffer and

place it in a user-

supplied array.

imBufGet2d()

MbufGetColor() Get data from one

or all bands of a

buffer and place it

in a user-supplied

array.

imBufChild() and

imBufGet()

First, allocate a child

buffer in a certain

band of color, and

then get the data.

MbufGetLine() Read a series of

pixels within

specified

coordinates, count

imBufMap() Create a pointer to

the buffer data using

imBufMap(), then

use the pointer to

them, and store

them in a user-

defined array.

read the pixels along

the line.

MbufImport() Import data from a

file into a data

buffer taking into

account its file

format.

imBufRestore() or

imBufLoad()

imBufRestore()

loads data from a

file into an

automatically

allocated buffer

while imBufLoad()

loads data into a

specified buffer.

MbufInquire() Inquire about a

data buffer.

imBufInquire()

MbufLoad() Load data from a

file into a data

buffer assuming it

is in a MIL file

format.

imBufLoad()

MbufPut() Transfer data from

Host memory to a

buffer.

imBufPut()

MbufPutColor() Put data from a

user-supplied array

into one or all

bands of a data

buffer.

imChild() and

imBufPut()

First, allocate a child

buffer, and then

transfer data to the

buffer.

MbufPutLine() Write a specified

series of pixels

within specified

coordinates on a

line.

imBufMap() Create a pointer to

the buffer data using

imBufMap, and then

use the pointer to

write the pixels

along the line.

MbufPut1d() Put data from a

user-supplied array

into a 1D area of a

buffer.

imBufPut1d()

MbufPut2d() Put data from a

user-supplied array

into a 2D area of a

buffer.

imBufPut2d()

MbufRestore() Restore MIL file

format data from a

file into an

automatically

imBufRestore()

allocated data

buffer.

MbufSave() Save a data buffer

in a file using the

MIL output file

format.

imBufSave()

MbufInquire() Inquire about a

data buffer

imBufInquire()

MbufLoad() Load data from a

file into a data

buffer assuming it

is in a MIL file

format.

imBufLoad()

MbufPut() Transfer data from

Host memory to a

buffer.

imBufPut()

MbufPutColor() Put data from a

user-supplied array

into one or all

bands of a data

buffer.

imChild() and

imBufPut()

First, allocate a child

buffer, and then

transfer data to the

buffer.

MbufPutLine() Write a specified

series of pixels

within specified

coordinates on a

line.

imBufMap() Create a pointer to

the buffer data using

imBufMap, and then

use the pointer to

write the pixels

along the line.

MbufPut1d() Put data from a

user-supplied array

into a 1-d area of a

buffer.

imBufPut1d()

MbufPut2d() Put data from a

user-supplied array

into a 2-d area of a

buffer.

imBufPut2d()

MbufRestore() Restore MIL file

format data from a

file into an

automatically

allocated data

buffer.

imBufRestore()

MbufSave() Save a data buffer

in a file using the

imBufSave()

MIL output file

format.

The Data Allocation and Access Module

MIL Command MIL Description Native Library

Command

Comments

MdigAlloc() Allocate a digitizer. imCamAlloc() or

imDigAlloc()

Generally

imCamAlloc() will be

used, imDigAlloc() is

used when there is

more than one

digitizer (and

necessary to specify

which digitizer a

function should use).

MdigAverage() Frame sequence

averaging from an

input device.

imDigGrab() and

processing function

First grab into a

buffer, and then call

processing function

depending on the

kind of averaging

needed to be

performed.

MdigChannel() Select the active

input channel of a

digitizer.

imCamControl() imCamControl() has

an item parameter

(IM_DIG_CHANNEL

).

MdigControl() Control the

specified digitizer.

imCamControl() or

imDigControl()

Generally most

digitizer attributes

can be set using

imCamControl(),

imDigControl()

programs the

digitizer directly and

will interfere with

other applications

using the digitizer.

MdigFree() Free a digitizer. imCamFree() or

imDigFree()

MdigGrab() Grab data from an

input device into a

buffer.

imDigGrab()

MdigGrabContinuous

()

Grab data

continuously from

an input device.

imDigGrab() imDigGrab() has the

Count parameter

that can be set

IM_CONTINUOUS

which will grabs

continuously until

imThrHalt() is called.

MdigGrabWait() Wait for the end of

the grab in

progress.

imSyncHost() or

imSyncThread()

imSyncHost() and

imSyncThread()

both have the State

parameter that can

be set to

IM_COMPLETED

(wait until the

function is

completed).

MdigHalt() Halt a continuous

grab from an input

device.

imThrHalt()

MdigHookFunction() Hook a function to

a digitizer event.

Not available

MdigInquire() Inquire about a

digitizer.

imCamInquire() or

imDigInquire()

imCamInquire()

should be used to

inquire about most

digitizer attributes,

imDigInquire() can

be used to inquire

about the input line

attribute.

MdigLut() Copy a LUT buffer

to a digitizer.

imCmControl() a

MdigReference() Select digitization

reference level.

imCamControl() With Item

parameter:

IM_DIG_REF_BLAC

K and

IM_DIG_REF_WHIT

E.

The Display Control Module

MIL Command MIL Description Native Library

Command

Comments

MdispAlloc() Allocate a display. imDispAlloc() Not needed unless

there is more than

one display.

MdispControl() Set display

attributes.

imDispControl()

MdispDeselect() Stop displaying an

image buffer.

Not applicable

MdispHookFunction() Hook a function to

a display event.

Not available

MdispFree() Free a display. imDispFree()

MdispInquire() Inquire about a

display.

imDispInquire()

MdispLut() Copy a LUT buffer

to the display

output LUT.

imDispControl() imDispControl() has

a Control parameter

that can be set to

IM_DISP_LUT_BUF

field.

MdispOverlayKey() Enable overlay

keying.

imDispCdontrol() imDispControl() has

a Control parameter

that has a

IM_KEY_MODE

field, which you can

enable overlay

keying.

MdispPan() Pan and scroll a

display.

imDispControl() imDispControl() has

a Control parameter

that has a

IM_DISP_PAN_X or

_Y field, which

allows image

displacement.

MdispSelect() Select an image

buffer to display.

imBufChild() and

imBufCopy()

First, allocate a

buffer for display,

then grab or copy

the image into that

buffer.

MdispSelectWindow() Select an image

buffer to display in

a user-defined

window.

Not available

MdispZoom() Zoom a display. imDispControl() mDispControl() has

a Control parameter

that has a

IM_DISP_ZOOM

field, in which you

can zoom the

display by a

specified factor.

The Data Generation Module

MIL Command MIL Description Native Library

Command

Comments

MgenLutFunction() Generate data into

a LUT buffer.

imGen1d()

MgenLutRamp() Generate ramp

data into a LUT

buffer.

imGen1d()

The Graphics Module

MIL Command MIL Description Native Library

Command

Comments

MgraAlloc() Allocate a

graphics context.

imBufAllocControl() A graphics context

can be set in an

ordinary buffer

through desired

graphic fields.

MgraArc() Draw an arc. imGraArc()

MgraArcFill() Draw a filled

elliptical arc.

imGraArcFill()

MgraBackColor() Associate a

background color

with a graphics

context.

imBufPutField() See imGraText():

IM_GRA_BACK_CO

LOR Field.

MgraClear() Clear an image

buffer.

imBufClear()

MgraColor() Associate a

foreground color

with a graphics

context.

imBufPutField() See imGraText():

IM_GRA_COLOR

Field.

MgraControl() Control the

specified graphic

context.

imBufPutField() See imGraText():

IM_GRA_BACK_M

ODE Field.

MgraDot() Draw a dot. imGraLine() or

imGraRect()

A dot can be created

by drawing a line or

rectangle of one

pixel.

MgraFill() Perform a

boundary-type

seed fill.

imGraFill()

MgraFont() Associate a text

font with a

graphics context.

imBufPutField() See imGraText():

IM_GRA_FONT

Field.

MgraFontScale() Associate a font

scale with a

graphics context.

imBufPutField() See imGraText():

IM_GRA_FONT_SC

ALE_X or _Y Field.

MgraFree() Free a graphics

context.

imBdufFree() A graphics context

can be freed on an

ordinary buffer for

desired graphic

fields.

MgraInquire() Inquire about the

graphic

parameters.

imBufGetField() or

imBufGetFieldDoubl

e()

imBufGetField()

returns a field value

as a type long while

imBufGetFieldDoubl

e() returns as a type

double.

MgraLine() Draw a line. imGraLine() or

imGraPlot()

imGraPlot() is a

faster method to

draw a series of

lines.

MgraRect() Draw a rectangle. imGraRect()

MgraRectFill() Draw a filled

rectangle.

imGraRectFill()

MgraText() Write text. imGraText()

The Image Processing Module

MIL Command MIL Description Native Library

Command

Comments

MimAllocResult() Allocate an image

processing result

buffer.

imBufAlloc()

MimArith() Perform a point-to-

point arithmetic

operation.

binary:

imBinTriadic()

integer:

imIntMonadic(),

imIntDyadic() or

imIntTriadic()

floating point:

imFloatDyadic(),

imFloatMonadic(), or

imFloatUnary() Mix

binary with integer

or integer with

floating point, must

first convert with

See also

Optimization with

Matrox Genesis

Native Library and

Data Management.

imFloatConvert() or

imBinConvert()

MimBinarize() Perform a point-to-

point binary-

thresholding

operation.

imIntBinarize()

MimClip() Perform a point-to-

point clipping

operation.

imIntLutMap() or

other processing

functions.

Depends on type of

clipping.

MimClose() Perform a closing-

type morphological

operation.

binary:

imBinMorphic()

grayscale:

imIntErodeDilate()

Perform a closing

operation by

performing a dilation

followed by an

erosion. With both

imBinMorphic() and

imIntErodeDilate(), a

user specifies

erosion or dilation

with OP parameter.

MimConnectMap() Perform a 3x3

connectivity

mapping.

imIntConnectMap()

MimConvert() Perform a color

conversion.

imIntConvertColor()

MimConvolve() Perform a general

convolution

operation.

imIntConvolve()

MimCountDifference() Count image

differences.

imIntCountDifferenc

e()

MimDilate() Perform a dilation

type morphological

operation.

binary:

imBinMorphic()

grayscale:

imIntErodeDilate()

With the Native

Library, depends on

data type.

MimDistance Perform a distance

transform.

imIntDistance()

MimEdgeDetect() Perform a specific

edge detection

operation and

produce a gradient

intensity and/or

gradient angle

image.

imIntConvolve() and

other processing

functions.

Specify edge

detection identifier

(horizontal, vertical,

laplacian, etc.) with

IntConvolve's Kernel

parameter.

MimErode() Perform an

erosion type

binary:

imBinMorphic()

Depends on data

type.

morphological

operation.

grayscale:

imIntErodeDilate()

MimFindExtreme() Find an image

buffer's extremes

(min, max).

imIntFindExtreme()

MimFree() Free an image

processing result

buffer.

imBufFree()

MimGetResult() Get values from

an image

processing result

buffer.

imBufGet() Normal buffer

functions.

MimGetResult1d() Get values from

an image

processing 1D

region of a result

buffer.

imBufGet1d() Normal buffer

functions.

MimHistogram() Generate the

intensity histogram

of an image buffer.

imIntHistogram()

MimHistogramEqualiz

e()

Perform a

histogram

equalization of an

image.

imIntHistogramEqua

lize()

MimInquire() Inquire about an

image processing

result buffer.

imBufInquire()

MimLabel() Label objects in an

image buffer.

imIntLabel()

MimLocateEvent() Locate event of a

specified type in

an image.

imIntLocateEvent()

MimLutMap() Perform a point-to-

point LUT-

mapping

operation.

imIntLutMap()

MimMorphic() Morphological

transformation.

binary:

imBinMorphic()

grayscale:

imIntErodeDilate()

imIntThickThin()

Depends on data

type.

MimOpen() Perform an

opening-type

binary:

imBinMorphic()

Depending on data

type, perform an

opening operation

morphological

operation.

grayscale:

imIntErodeDilate()

by performing an

erosion followed by

dilation. With both,

specify erosion or

dilation with OP

parameter.

MimProject() Project a 2D

image into 1D.

imIntProject()

MimRank() Perform a rank

filter on the pixels

in an image.

imIntRank() User-defined kernels

not supported.

MimResize() Resize an image. generally:

imIntScale() or

imIntWarpPolynomia

l()zoom up by an x

and y factor:

imIntZoom()zoom

down by an x and y

factor:

imIntSubsample()

MimRotate() Rotate an image. imIntWarpPolynomia

l() or imIntFlip()

imIntFlip() is faster,

but can be used for

90 degree

increments only.

MimShift() Perform a point-to-

point bit shift.

imIntMonadic() Set operation (op)

parameter to:

IM_SHIFT.

MimThick() Thicken blobs in

an image.

binary:

imBinMorphic()

grayscale:

imIntThickThin()

Depends on data

type.

MimThin() Thin blobs in an

image.

binary:

imBinMorphic()

grayscale:

imIntThickThin()

Depends on data

type.

MimTranslate() Translate an

image in x and/or

y.

imIntWarpPolynomia

l()

Equivalent to linear

translating.

MimZoneOfInfluence() Perform a zone of

influence

detection.

Not available

The Measurement Module

MIL Command MIL Description Native Library

Command

Comments

MmeasAllocContext() Allocate a

measurement

context.

Not available

MmeasAllocMarker() Allocate a

measurement

marker.

Not available

MmeasAllocResult() Allocate a

measurement

result buffer.

Not available

MmeasCalculate() Calculate

measurements

using two markers.

Not available

MmeasControl() Set a

measurement

context control

parameter.

Not available

MmeasFindMarker() Find a marker in

an image and take

its measurements.

Not available

MmeasFree() Free a

measurement

buffer (marker,

result, or context).

Not available

MmeasGetResult() Get the results of

measurements

taken.

Not available

MmeasInquire() Inquire about a

marker, result or

context buffer.

Not available

MmeasRestoreMarker

()

Restore a marker

from disk.

Not available

MmeasSaveMarker() Save a marker to

disk.

Not available

MmeasSetMarker() Set a marker

parameter.

Not available

The Pattern Recognition Module

MIL Command MIL Description Native Library

Command

Comments

MpatAllocAutomodel() Automatically

allocate a unique

pattern-matching

model from a

source image.

Not available

MpatAllocModel() Allocate a pattern-

matching model

from a source

image.

imPatAllocModel()

MpatAllocResult() Allocate a pattern

matching result

buffer.

imPatAllocResult()

MpatAllocRotatedMod

el()

Rotate a pattern-

matching model.

imPatAllocRotatedM

odel()

MpatCopy() Copy a pattern-

matching model to

an image buffer.

imPatCopy()

MpatFindModel() Find a pattern-

matching model in

the target image

buffer.

imPatFindModel()

MpatFindMultipleMod

el()

Find multiple

pattern matching

models in the

target image

buffer.

imPatFindModel() Use

imPatFindModel()

several times,

specifying the

different models in

each separate

Model parameter.

MpatFindOrientation() Find the

orientation of an

image or of an

object in an image.

Not available

MpatFree() Free a pattern-

matching buffer

(model or result

buffer).

imPatFree()

MpatGetNumber() Get the number of

model

occurrences in the

target image.

imPatGetNumber()

MpatGetResult() Get the pattern

matching result

values.

imPatGetResult()

MpatInquire() Inquire about a

pattern-matching

model.

imPatInquire()

MpatPreprocModel() Preprocess a

pattern-matching

model.

ImPatPreprocModel(

)

MpatRead() Read a pattern-

matching model

from an open file.

imPatRead()

MpatRestore() Restore a pattern-

matching model

from a file.

imPatRestore()

MpatSave() Save a pattern-

matching model to

a file.

imPatSave()

MpatSetAcceptance() Set the pattern

matching

acceptance level.

imPatSetAcceptanc

e()

MpatSetAccuracy() Set the pattern

matching

positional

accuracy.

imPatSetAccuracy()

MpatSetAngle() Set the angular

search control

parameters of a

model.

Not available

MpatSetCenter() Set the pattern

matching model

center.

imPatSetCenter()

MpatSetCertainty() Set the pattern

matching certainty

level.

imPatSetCertainty()

MpatSetDontCare() Set model pixels

to the "don't care"

state.

imPatSetDontCare()

MpatSetNumber() Set the expected

number of

matches.

imPatSetNumber()

MpatSetPosition() Set the pattern

matching search

position.

imPatSetPosition()

MpatSetSearchParam

eter()

Set a pattern

matching internal

search parameter.

imPatSetSearchPar

ameter()

MpatSetSpeed() Set the pattern

matching search

speed.

imPatSetSpeed()

MpatWrite() Write a pattern-

matching model to

an open file.

imPatWrite()

The System Allocation and Inquiry Module

MIL Command MIL Description Native Library

Command

Comments

MsysAlloc() Allocate a system. imDevAlloc()

MsysControl() Control a system

behavior.

imDevControl() or

imAppControl()

MsysFree() Free a system. DevFree()

MsysInquire() Inquire about a

system.

imSysInquire() or

imDevInquire() or

ImAppInquire

The OCR Commands

MIL Command MIL Description Native Library

Command

Comments

MocrAllocFont() Allocate an OCR

font buffer.

Not available

MocrAllocResult() Allocate an OCR

result buffer.

Not available

MocrCalibrateFont() Automatically

calibrate the target

font's character

size to match a

sample image.

Not available

MocrControl() Set OCR

processing

controls.

Not available

MocrCopyFont() Copy a font

character to or

from an image

buffer.

Not available

MocrFree() Free an OCR font

or result buffer.

Not available

MocrGetResult() Read results from

an OCR result

buffer.

Not available

MocrHookFunction() Hook a custom

checksum

function.

Not available

MocrImportFont() Import font data

from file on disk.

Not available

MocrInquire() Retrieves font

character

information.

Not available

MocrModifyFont() Invert or resize a

font to match the

target image

character.

Not available

MocrReadString() Read an unknown

string from an

image.

Not available

MocrRestoreFont() Restore a font

from disk.

Not available

MocrSaveFont() Save an existing

font and its current

setting to disk.

Not available

MocrSetConstraint() Set the valid

character for each

position in the

string.

Not available

MocrVerifyString() Verify a known

string in an image.

Not available

Optimizing with Matrox Genesis Native Library

In most applications, improved performance can be achieved by reducing the number of function calls

required to perform an operation. With the Native Library, a user can make use of various multiple

operation functions like imIntTriadic() to perform arithmetic and logical operations on up to three

operands. Additionally, there are several other commands that can be used to optimize an application

that should be considered (for example, imBinTriadic(), imIntMac1(), imIntMac2(), imFloatMac1(), and

imFloatMac2()).

